

NORTH SYDNEY BOYS HIGH SCHOOL

2012 HSC ASSESSMENT TASK 2

Mathematics

General Instructions

Section I contains 4 multiple choice questions to be answered on the separate answer sheet provided.

Section II is to be answered in the booklet provided, showing ALL necessary working.

- Write using blue or black pen
- Board approved calculators may be used
- Each new question is to be started on a **new page**.
- Attempt all questions

Reading Time – 5 minutes Working Time – 55 minutes Total Time – 60 minutes

C	lass	Teg	cher	Please	tick
•	W33	ICU	wiiti.	1 lease	IIC N

- O Mr Berry
- O Ms Ziaziaris
- O Mr Lowe
- O Mr Weiss
- O Mr Lam
- O Mr Ireland
- O Mr Fletcher

Student Number:		:	

(To be used by the exam markers only.)

Question No	1-4	5	6	7	8	9	Total	Total %
Mark	<u>-</u>	- 9	11	- 9	<u>-</u>	- 6	43	100

SECTION I

Question 1

The parabola whose equation is $x^2 = \frac{y}{4}$ has focal length equal to

1

- (A) $\frac{1}{4}$
 - (B) $\frac{1}{2}$ (C) 4
- (D) $\frac{1}{16}$

Question 2

The parabola with equation $(y-3)^2 = 16(x+4)$ has its vertex at

1

- (A) (3,-4) (B) (-3,4) (C) (4,-3)
- (D) (-4, 3)

Question 3

Given the graph of y = f(x) below, the value of $\int_0^3 f(x) dx$ is

1

- (A) 0
- (B) 1
- (C) 2
- (D) 3

Question 4

$$\int \frac{dx}{2} =$$

1

- (A) 2x+C (B) 2^0+C (C) $\frac{1}{2}x+C$ (D) $-\frac{1}{2}x+C$

SECTION II

Question 5

Find the indefinite integrals

a)
$$\int (6x - x^4) dx$$

1

b)
$$\int (3x-5)^4 dx$$

1

c)
$$\int (2x^2 - 1)^2 dx$$

2

Find the definite integrals

d)
$$\int_0^1 \frac{dx}{(8x+5)^2}$$

2

e)
$$\int_{4}^{9} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

3

Question 6

a) Write down the equation of the parabola with focus (0,-2) and directrix y=2.

1

b) Write down the equation of the parabola with focus (3,0) and vertex (-1,0).

1

c) Find the equation of the parabola with vertex (-2,3), axis parallel to the Y-axis and passing through the point (-6,-5).

3

- d) For the equation $x = 4y y^2$, find
 - i. the vertex

3

ii. the focal length

1

iii. the focus

1

iv. the equation of the directrix

1

Ouestion 7

a) Calculate the area under the curve $y = x^2 + 1$ bounded by the X-axis and x = -1 and x = 1.

2

b) If the gradient function is $\frac{dy}{dx} = \frac{3x^4 - 1}{x^2}$ and y = 10 when x = 2, find the primitive function.

3

c) Find the area between y = (x-2)(x-1) and y = x-1.

4

Wasteland bordering a river bank and a straight road was fenced off and used as a recreational park. Perpendicular distances from the road to the river bank are shown on the diagram.

- i) Use the Simpson's Rule to approximate the area of the recreational park.
- ii) Use the Trapezoidal Rule to approximate the area of the recreational park.

Question 9

a) The shaded region between the curves $y = x^3$ and y = 4x in the first quadrant in the graph below is rotated about the Y-axis. Write down the integral that would calculate the volume of the solid formed, **DO NOT EVALUATE THE INTEGRAL**.

2

b) The shaded area in the diagram below enclosed by $y = x^2$, $y = 2 - x^2$ and the X-axis is rotated about the X-axis. Find the volume of the solid generated correct to 2 decimal places.

1.
$$4a = \frac{1}{4}$$
0. $a = \frac{1}{16}$

5.a)
$$\frac{6x^2 - x^5}{5} + C$$
.
 $3x^2 - x^5 + C$

b)
$$(3x-5)^5+c$$

c)
$$\int (4x^4 - 4x^2 + 1) dx$$

= $\frac{4x^5}{5} - \frac{4x^3}{3} + x + C$

d)
$$\int_{0}^{1} (8x+5)^{-2} dx$$

= $\left[\frac{(8x+5)^{-1}}{-8} \right]_{0}^{1}$
= $\frac{1}{8} \left[\frac{-1}{8x+5} \right]_{0}^{1}$
= $\frac{1}{8} \left[\frac{1}{13} + \frac{1}{5} \right]$
= $\frac{1}{8} \frac{8}{65}$
= $\frac{1}{65}$

e)
$$\int_{4}^{9} (\int x + \frac{1}{\sqrt{x}}) dx$$

= $\int_{4}^{9} (x^{\frac{1}{2}} + x^{-\frac{1}{2}}) dx$
= $\left[\frac{2x}{3}^{\frac{3}{2}} + 2x^{\frac{1}{2}}\right]_{4}^{9}$
= $\left[\frac{2}{3} \times 9^{\frac{3}{2}} + 2 \times 9^{\frac{1}{2}} - \left(\frac{2}{3} \times 4^{\frac{3}{2}} + 2 \times 4^{\frac{1}{2}}\right)\right]$
= $24 - 9\frac{1}{3}$
= $14 - \frac{2}{3}$

b)
$$y^2 = 16(x+1)$$

C).
$$(2+2)^{2} = 4a(y-3)$$

$$5ub(-6,-5)$$

$$(-6+2)^{2} = -4a(-8)$$

$$16 = 32a$$

$$a = \frac{1}{2}$$

$$\therefore Equin : (x+2)^{2} = -2(y-3)$$

d) (i)
$$y^2 - 4y = -x$$

 $y^2 - 4y + (-2)^2 = -x + 4$
 $(y-2)^2 = -(x-4)$
Vertex $(4,2)$

(ii)
$$4a = 1$$
 (iii) Focus $(3\frac{3}{4}, 2)$?
 $a = \frac{1}{4}$ (iv) $x = 4\frac{1}{4}$

$$A = 2 \int_{0}^{1} (x^{2}+1) dx$$

$$= 2 \left[\frac{x^{3}}{3} + x \right]_{0}^{1}$$

$$= 2 \left[\frac{1}{3} + 1 \right]$$

$$= \frac{8}{3} \text{ sq. units}.$$

b)
$$\frac{dy}{d\lambda} = \frac{3x^4 - 1}{x^2}$$

= $3x^2 - x^{-2}$
 $y = \int 3x^2 - x^{-2} dx$
 $y = x^3 - \frac{x^{-1}}{-1} + C$
 $y = x^3 + \frac{1}{x} + C$

Sub
$$y=10$$
, $z=2$
 $10 = 8 + \frac{1}{2} + C$
 $c = 1\frac{1}{2}$

Points of Intersection $(\chi-2)(\chi-1) = \chi-1$ $(\chi -1)(\chi -2-1)=0$ x=1, x=3.y=0'y=2

$$A = \int_{1}^{3} (x-1) - (x-2)(x-1) dx$$

$$= \int_{1}^{3} x-1 - (x^{2}-3x+2) dx$$

$$= \int_{1}^{3} -x^{2}+4x-3 dx$$

$$= \left[-x^{3}+2x^{2}-3x\right]_{1}^{3}$$

$$= \left[-9+18-9-\left(-\frac{1}{3}+2-3\right)\right]$$

$$= \left[\frac{4}{3}\right] \text{ sq. units.}$$

8.a) (1)

$$A = \frac{6}{3} \begin{cases} 0 + 4(13 + 9) + 2(10) + 12 \end{cases}$$
 = 240 sq. units.

(i)
$$A = \frac{6}{2} \begin{cases} 0 + 2(13 + 10 + 9) + 12 \end{cases}$$
 (ii) $A = \frac{6}{2} \begin{cases} 0 + 2(13 + 10 + 9) + 12 \end{cases}$ (iii) $A = \frac{6}{2} \begin{cases} 0 + 2(13 + 10 + 9) + 12 \end{cases}$ (iii) $A = \frac{6}{2} \begin{cases} 0 + 2(13 + 10 + 9) + 12 \end{cases}$

9.4)
$$V = \pi \int_{0}^{8} \frac{3}{3} \int_{0}^{8} - \pi \int_{0}^{8} \frac{y^{2}}{16} dy$$

$$= \pi \left[\frac{34}{48} \right]_{0}^{8} - \pi \left[\frac{43}{48} \right]_{0}^{8}$$

b) Point of Intersection $\chi^{2} = 2 - \chi^{2}$

$$V = \pi \int_{0}^{1} x^{4} dx + \pi \int_{0}^{\sqrt{2}} (4 - 4x^{2} + x^{4}) dx$$

$$= \pi \left[\frac{x^{5}}{5} \right]^{1} + \pi \left[4x - \frac{4x^{3}}{3} + \frac{x^{5}}{5} \right]^{\sqrt{2}}$$